高中数学简易逻辑难点分析是关于高中学习 - 高中数学 - 高一数学方面的资料,
高中数学简易逻辑难点分析
(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。
(2)对命题的否定只是否定命题的结论,而否命题:既否定题设,又否定结论。
(3)复合命题真假的判定:p, q只要有一个真,则p或q为真,可简称为“一真必真”;同样p且q是:“一假必假”。
(4)等价命题:原命题与它的逆否命题等价,当一个命题真假不易判断时,可转而判断它的逆否命题。
(5)反证法的运用有两个难点:何时使用反证法和如何得到矛盾。
(6)对于“若p则q”形式的命题,如果已知p q,那么p是q的充分条件,q是p的必要条件。
如果既有pq,又有q p,则记作p q,就说p是q的充要条件,也可以说q是p的充要条件,或者说p和q互为充要条件。
若pq,但q p,则p是q的充分不必要条件,q是p的必要不充分条件。
在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断。
编辑推荐:
高中数学公式大全
高中数学公式大全:
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
怎样才能学好高中数学函数问题
高中数学学习函数要重点解决好四个问题:准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识.
(一)把握数形结合的特征和方法
函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性